NUMERICAL METHODS FOR APPROXIMATING STOCHASTIC SEMILINEAR TIME-FRACTIONAL RAYLEIGH-STOKES EQUATIONS  

在线阅读下载全文

作  者:Mariam Al-Maskari 

机构地区:[1]Department of Mathematics,Sultan Qaboos University,Muscat,Oman

出  处:《Journal of Computational Mathematics》2025年第3期569-587,共19页计算数学(英文)

摘  要:This paper investigates a semilinear stochastic fractional Rayleigh-Stokes equation featuring a Riemann-Liouville fractional derivative of orderα∈(0,1)in time and a fractional time-integral noise.The study begins with an examination of the solution’s existence,uniqueness,and regularity.The spatial discretization is then carried out using a finite element method,and the error estimate is analyzed.A convolution quadrature method generated by the backward Euler method is employed for the time discretization resulting in a fully discrete scheme.The error estimate for the fully discrete solution is considered based on the regularity of the solution,and a strong convergence rate is established.The paper concludes with numerical tests to validate the theoretical findings.

关 键 词:Riemann-Liouville fractional derivative Stochastic Rayleigh-Stokes equation Finite element method Convolution quadrature Error estimates 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象