检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xingyang Ye Junying Cao Chuanju Xu
机构地区:[1]School of Science,Jimei University,Xiamen 361021,China [2]School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China [3]School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing,Xiamen University,Xiamen 361005,China
出 处:《Journal of Computational Mathematics》2025年第3期615-640,共26页计算数学(英文)
基 金:supported by the Fujian Alliance of Mathematics(Grant No.2024SXLMMS03);by the Natural Science Foundation of Fujian Province of China(Grant No.2022J01338);supported by the NSFC(Grant Nos.12361083,62341115);by the Foundation of Guizhou Science and Technology Department(Grant No.QHKJC-ZK[2024]YB497);by the Natural Science Research Project of Department of Education of Guizhou Province(Grant No.QJJ2023012);by the Science Research Fund Support Project of the Guizhou Minzu University(Grant No.GZMUZK[2023]CXTD05);supported by the NSFC(Grant No.12371408).
摘 要:In this paper,we consider numerical solutions of the fractional diffusion equation with theαorder time fractional derivative defined in the Caputo-Hadamard sense.A high order time-stepping scheme is constructed,analyzed,and numerically validated.The contribution of the paper is twofold:1)regularity of the solution to the underlying equation is investigated,2)a rigorous stability and convergence analysis for the proposed scheme is performed,which shows that the proposed scheme is 3+αorder accurate.Several numerical examples are provided to verify the theoretical statement.
关 键 词:Caputo-Hadamard derivative Fractional differential equations High order scheme Stability and convergence analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13