检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dan Zhao Dongfang Li Yanbin Tang Jinming Wen
机构地区:[1]School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China [2]Hubei Key Laboratory of Engineering Modeling and Scientific Computing,Huazhong University of Science and Technology,Wuhan 430074,China [3]College of Information Science and Technology,Jinan University,Guangzhou 510632,China
出 处:《Journal of Computational Mathematics》2025年第3期708-730,共23页计算数学(英文)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.12171442,12231003,12271215,12326378,11871248).
摘 要:We present a decoupled,linearly implicit numerical scheme with energy stability and mass conservation for solving the coupled Cahn-Hilliard system.The time-discretization is done by leap-frog method with the scalar auxiliary variable(SAV)approach.It only needs to solve three linear equations at each time step,where each unknown variable can be solved independently.It is shown that the semi-discrete scheme has second-order accuracy in the temporal direction.Such convergence results are proved by a rigorous analysis of the boundedness of the numerical solution and the error estimates at different time-level.Numerical examples are presented to further confirm the validity of the methods.
关 键 词:Coupled Cahn-Hilliard system Leap-frog method Scalar auxiliary variable Error estimate
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127