A DECOUPLED,LINEARLY IMPLICIT AND UNCONDITIONALLY ENERGY STABLE SCHEME FOR THE COUPLED CAHN-HILLIARD SYSTEMS  

在线阅读下载全文

作  者:Dan Zhao Dongfang Li Yanbin Tang Jinming Wen 

机构地区:[1]School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China [2]Hubei Key Laboratory of Engineering Modeling and Scientific Computing,Huazhong University of Science and Technology,Wuhan 430074,China [3]College of Information Science and Technology,Jinan University,Guangzhou 510632,China

出  处:《Journal of Computational Mathematics》2025年第3期708-730,共23页计算数学(英文)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.12171442,12231003,12271215,12326378,11871248).

摘  要:We present a decoupled,linearly implicit numerical scheme with energy stability and mass conservation for solving the coupled Cahn-Hilliard system.The time-discretization is done by leap-frog method with the scalar auxiliary variable(SAV)approach.It only needs to solve three linear equations at each time step,where each unknown variable can be solved independently.It is shown that the semi-discrete scheme has second-order accuracy in the temporal direction.Such convergence results are proved by a rigorous analysis of the boundedness of the numerical solution and the error estimates at different time-level.Numerical examples are presented to further confirm the validity of the methods.

关 键 词:Coupled Cahn-Hilliard system Leap-frog method Scalar auxiliary variable Error estimate 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象