电力系统智能化领域的人工智能技术发展趋势研究  

Research on the Development Trend of Artificial Intelligence Technology in the Field of Power System Intelligence

在线阅读下载全文

作  者:周旭 ZHOU Xu(Jining Public Mechanical and Electrical Equipment Engineering Limited Liability Company,Jining,Shandong 272000,China)

机构地区:[1]济宁公用机电设备工程有限责任公司,山东济宁272000

出  处:《移动信息》2025年第4期329-331,共3页Mobile Information

摘  要:随着电力系统的智能化、自动化发展,人工智能技术在电力系统中的应用日益广泛,已成为推动电力系统变革的关键力量。文中通过文献综述和案例分析,探讨了人工智能技术在电力系统智能化领域的应用现状与发展趋势。研究发现,人工智能技术主要应用于电力系统的负荷预测、设备状态监测与诊断、电网自愈能力提升等方面。其中,基于深度学习的负荷预测技术、基于数据挖掘的设备状态监测以及基于强化学习的电网优化调度技术等更为重要。文中还分析了现阶段在电力系统中应用人工智能时存在的难题,如数据品质及安全维护、模型的解释性和泛化性等,同时给出了相应的应对策略,以增强数据的品质及安全性,提升模型的简洁度和可信度。With the development of intelligent and automated power systems,artificial intelligence technology has become increasingly widely used in power systems,and has become a key force to promote power system reform.This paper discusses the application status and development trend of artificial intelligence technology in the field of intelligent power systems through literature review and case analysis.The study found that artificial intelligence technology is mainly used in power system load forecasting,equipment condition monitoring and diagnosis,and power grid self-healing capacity enhancement.Among them,load forecasting technology based on deep learning,equipment condition monitoring based on data mining,and power grid optimization scheduling technology based on reinforcement learning are more important.The paper also analyzes the problems existing in the application of artificial intelligence in power systems at this stage,such as data quality and security maintenance,model interpretation and generalization,etc.,and gives corresponding coping strategies to enhance data quality and security,improve the simplicity and credibility of the model.

关 键 词:电力系统智能化 负荷预测 设备状态监测 

分 类 号:TM769[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象