检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭和平[1] 高一峰 PENG Heping;GAO Yifeng
出 处:《信息技术与信息化》2025年第4期18-23,30,共7页Information Technology and Informatization
基 金:国家自然科学基金项目(52075222)。
摘 要:针对农作物病害识别存在算法参数量大、计算速度慢和现有公开数据集少等问题,文章提出了一种基于改进YOLOv8的目标检测算法。首先,创建了Mydataset农作物病害数据集,填补了算法模型在数据集方面的不足。其次,引入了快速神经网络(faster neural networks,FasterNet)轻量化网络模块,大幅减少了模型的参数量和计算量,使得算法更适应低计算能力的环境。同时,采用双向特征金字塔网络(bi-directional feature pyramid network,BiFPN)的特征融合结构,不仅提高了模型的特征融合效率,还进一步降低了参数量,进而显著提升了模型的检测精度和性能。此外,通过引入可变形大内核注意力机制(deformable large kernel attention,D-LKA Attention),扩大了模型的感受野,加强了全局特征的捕捉和局部特征的细化提取,实现了在降低参数量和FLOPs(floating point operations)的同时提高检测效果的目标。实验结果表明,在Mydataset、VOC-2007和Vehicles三组数据集上,与原始YOLOv8模型相比,YOLOv8-self在Mydataset数据集上,参数量下降了约20.3%,精准度提升0.04%,平均精度均值(mean average precision IOU=0.5~0.95,mAP@0.5:0.95)提升了3.7%,模型的处理帧速(frames per second,FPS)提升了4%。在VOC-2007和Vehicles数据集上的检测精度也有类似的提升。同时,实验结果也证明在对于文章提出常见的12种农业病害(豆角叶斑、大豆锈病、草莓角斑病、草莓果肉腐烂、草莓粉状叶霉病、草莓花枯萎病、草莓灰霉病、草莓叶斑、草莓白粉果、番茄病、番茄蜘蛛螨、番茄叶霉病)识别任务中,优化后的算法具有更简约、更精准以及更强的泛化性能,能够适应硬件设备条件较差的环境,更适用于农作物病害的检测任务。
关 键 词:YOLOv8 算法 智慧农业 目标检测 轻量化网络 农作物病害
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49