检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mohammad Mamun Safiul Haque Chowdhury Muhammad Minoar Hossain M.R.Khatun Sadiq Iqbal
机构地区:[1]Department of Computer Science and Engineering,Bangladesh University,Dhaka,Bangladesh [2]Department of Computer Science and Engineering,Mawlana Bhashani Science and Technology University,Tangail 1902,Bangladesh
出 处:《Informatics and Health》2025年第1期17-40,共24页信息学与健康(英文)
摘 要:Background:Liver disease(LD)significantly impacts global health,requiring accurate diagnostic methods.This study aims to develop an automated system for LD prediction using machine learning(ML)and explainable artificial intelligence(XAI),enhancing diagnostic precision and interpretability.Methods:This research systematically analyzes two distinct datasets encompassing liver health indicators.A combination of preprocessing techniques,including feature optimization methods such as Forward Feature Selection(FFS),Backward Feature Selection(BFS),and Recursive Feature Elimination(RFE),is applied to enhance data quality.After that,ML models,namely Support Vector Machines(SVM),Naive Bayes(NB),Random Forest(RF),K-nearest neighbors(KNN),Decision Trees(DT),and a novel Tree Selection and Stacking Ensemble-based RF(TSRF),are assessed in the dataset to diagnose LD.Finally,the ultimate model is selected based on incorporating cross-validation and evaluation through performance metrics like accuracy,precision,specificity,etc.,and efficient XAI methods express the ultimate model’s interoperability.Findings:The analysis reveals TSRF as the most effective model,achieving a peak accuracy of 99.92%on Dataset-1 without feature optimization and 88.88%on Dataset-2 with RFE optimization.XAI techniques,including SHAP and LIME plots,highlight key features influencing model predictions,providing insights into the reasoning behind classification outcomes.Interpretation:The findings highlight TSRF’s potential in improving LD diagnosis,using XAI to enhance transparency and trust in ML models.Despite high accuracy and interpretability,limitations such as dataset bias and lack of clinical validation remain.Future work focuses on integrating advanced XAI,diversifying datasets,and applying the approach in clinical settings for reliable diagnostics.
关 键 词:Liver disease DIAGNOSIS Machine learning Explainable artificial intelligence(XAI) Feature optimization
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49