检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学综合业务网国家重点实验室,西安710071
出 处:《声学学报》2003年第1期28-32,共5页Acta Acustica
基 金:国家自然科学基金资助项目(69872027)
摘 要:针对语音识别中由于强噪声的影响而引起的Lombard和Loud效应进行研究,提出了基于训练数据的加性噪声和Lombard及Loud效应的联合补偿法。对于加性噪声是从谱减法的逆向角度对训练数据在频谱域采用谱加法;对于Lombard和Loud语音,则采用基于隐马尔可夫模型(HMM)状态标注的训练数据补偿,该方法同时考虑Lombard和Loud语音不同声学单元的不同状态在倒谱域的多种变化和多种变异情况下不同声学单元的音长及相对音长的变化。这种基于数据的多模式补偿使模型自动适应多种噪声和语音变异情况,在强噪声环境下具有很强的鲁棒性,并且不影响识别系统在正常环境或正常发音时的识别性能.同时,由于补偿是在训练过程中得到,不增加识别时的计算复杂度。This paper proposes a unified approach for the noisy Lombard and Loud speech recognition based on training data compensation. A spectral addition to the training data is applied to the additive noise which is derived from the reversed point of spectral subtraction, while the compensation in Mel frequency cepstrum (MFC) domain for the Lombard and loud speech is based on HMM state labeling of the training data which take jointly the Mel frequency cepstrum coefficient (MFCC) variance and duration of different states in different acoustic units into account. The new approach is of great robustness in extremely noise and does not worsen the performance under normal environment and normal style. Meanwhile, since the compensation is made in the training phase, it does not increase the complexity of recognition.
关 键 词:强噪声 语音识别 Lombard LOUD 语音补偿 加性噪声 语音信号处理
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117