三维压电介质界面裂纹的边界积分—微分方程  被引量:2

BOUNDARY INTERGRAL-DIFFERENTIAL EQUATIONS FOR INTERFACIAL CRACKS IN THREE DIMENSIONAL PIEZOELECTRIC MEDIA

在线阅读下载全文

作  者:赵明皞[1] 郭长江[2] 方平治[1] 沈亚鹏[3] 

机构地区:[1]郑州机械研究所,郑州450052 [2]郑州轻工业学院机电系,郑州450002 [3]西安交通大学工程力学系,西安710049

出  处:《机械强度》2002年第4期535-538,共4页Journal of Mechanical Strength

基  金:河南省杰出人才基金资助项目~~

摘  要:基于三维两相横观各向同性压电介质的基本解和压电介质的Somigliana恒等式 ,利用发散积分的有限部理论 ,建立以裂纹面上的不连续位移和不连续电势为基本未知量的三维压电介质界面裂纹问题的超奇异积分—微分方程组 ,其中的积分核具有O(1 r2 )阶的奇异性。当两相材料退化为均质材料或单相材料时 ,方程组中的微分项的系数为零 。The study on interfacial fracture problem in piezoelectric materials is very important since many smart structures are composite of those materials. Up to now, most of the theoretical researches in this filed are limited to two dimensional problems. In this paper, based on the three dimensional fundamental solutions for two phased transversely isotropic piezoelectric media and the corresponding Somigliana identity, a set of hyper singular integral differential equations is obtained in terms of the displacement discontinuities and the electric potential discontinuity across crack faces. The kernels in the integrals have the singularity of O(1/r 2) . As a special case when the two phased piezoelectric media become homogeneous, the coefficients of the differential parts in these equations equal zero and, therefore, the equations reduce to the hyper singular integral equations. By using of the main part analysis method, the singularity indexes of displacement, electric potential, electric field, electric displacement, strain and stress near the crack tip can be derived.

关 键 词:压电介质 界面裂纹 边界积分-微分方程 超奇异积分 

分 类 号:TB381[一般工业技术—材料科学与工程] O175.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象