检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《成都理工学院学报》2002年第6期698-701,共4页Journal of Chengdu University of Technology
摘 要:将正则配分函数中任一分子与其它所有 (N -1个 )分子间的相互作用能之和折算为其中任一对指定分子相互作用能的 N-1倍与一个校正系数 h之积 ,并假设这个积只与上述分子对的坐标相关。这样 ,配分函数即可化为分子对积分之积 ,其中积分常数由集团展开法求出。此法可比较合理地导出二阶维里方程 。In the canonical ensemble distribution function Q , the total interactive energies between any selected molecule and all the other N-1 ones are converted to N-1 times of the interactive energies of an arbitrary pair of molecules among them multiplied by a rectification coefficient, and the product is regarded as a function only depending on the coordinates of the selected pair of molecules. Then, distribution function Q can be transformed into a product of integrals of N /2 pairs of molecules. The cluster integral expansion method is used to derive the integral constant, whose simplified form is substituted into Q . The former two terms in the logarithm expansion of Q are substituted into the definition expression of pressure in the canonical ensemble theory. In this way, quadratic virial equation of state can be derived reasonably, thus the mathematical difficulty in the classical canonical ensemble method is eliminated.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28