基于低秩字典学习的高光谱遥感图像去噪  被引量:6

Hyperspectral Image Denoising Based on Low Rank Dictionary Learning

在线阅读下载全文

作  者:张静妙[1] 高双喜[2] 王晓娜[3] 

机构地区:[1]河北经贸大学计算机中心,河北秦皇岛066004 [2]河北经贸大学信息技术学院,石家庄050061 [3]燕山大学信息科学与工程学院,河北秦皇岛066004

出  处:《控制工程》2016年第6期823-827,共5页Control Engineering of China

基  金:河北省高等学校科学技术研究项目(QN20131136)

摘  要:针对高光谱遥感图像(Hyperspectral Image,HSI)去噪问题,提出了基于非局部低秩字典学习的图像去噪算法。该算法利用高光谱遥感图像各波段之间的强相关性,结合图像非局部自相似性和局部稀疏性提高去噪性能。首先,结合各波段图像的强相关性、非局部自相似性和局部稀疏性建立非局部低秩字典学习模型,然后,利用迭代法求解该模型得到冗余字典和稀疏表示系数,最后,利用冗余字典和稀疏表示系数复原图像。相比较现有先进的算法,由于充分利用了高光谱图像各波段的强相关性这一内在特征,使得该算法能够很好地保持高光谱遥感图像的细节信息,达到了预期效果。For the multi-spectral remote sensing image denoising problem, the image denoising algorithm based on nonlocal low rank dictionary learning is proposed. The basic idea of this algorithm is to improve the image denoising effect by simultaneously using high correlation between each band image, nonlocal similarity and local sparity. Firstly, the nonlocal low rank dictionary learning model is constructed by the high correlation between each band, nonlocal similarity and local sparity. Then this model is solved by the iterative method to obtain redundant dictionary and sparse represent coefficients. Finally, the denoising image can be restored by the redundant dictionary and sparse represent coefficients. Compared with state-of-the-art methods, the PSNR of the proposed algorithm is higher for taking advantage of the high correlation between each band image, while image detail information can be preserved to achieve the expected results.

关 键 词:图像去噪 高光谱 遥感图像 低秩 字典学习 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象