受轴向基础激励悬臂梁非线性动力学建模及周期振动  被引量:14

NONLINEAR DYNAMIC MODELING AND PERIODIC VIBRATION OF A CANTILEVER BEAM SUBJECTED TO AXIAL MOVEMENT OF BASEMENT

在线阅读下载全文

作  者:冯志华[1] 胡海岩[1] 

机构地区:[1]南京航空航天大学振动工程研究所,南京210016

出  处:《固体力学学报》2002年第4期373-379,共7页Chinese Journal of Solid Mechanics

基  金:国防基础科研计划 (10 172 0 0 5 )项目

摘  要:针对轴向基础激励的悬臂梁 ,基于Kane方程建立了含几何非线性及惯性非线性相互耦合项的动力学方程 .采用多尺度法研究了梁的主参激共振响应 .研究结果表明 ,梁的非线性惯性项具有软特性效应 ,对系统二阶及以上模态产生显著影响 ;而梁的非线性几何项具有硬特性效应 ,主宰了系统的一阶模态响应 .将文中结果与同类研究进行比较 ,取得了很好的一致性 ,从一个侧面验证了建模方法的正确性 .Dynamic modeling of a cantilever beam under an axial movement of its basement is presented. The dynamic equation of motion for the cantilever beam is established by using Kane's equation first and then simplified through the Rayleigh-Ritz method. Compared with the older modeling method, which linearize the generalized inertia forces and the generalized active forces, the present modeling takes the coupled cubic nonlinearities of geometrical and inertial types into consideration. The method of multiple scales is used to directly solve the nonlinear differential equations and to derive the nonlinear modulation equation for the principal parametric resonance. The results show that the nonlinear inertia terms produce a softening effect and play a significant role in the planar response of the second mode and the higher ones. On the other hand, the nonlinear geometric terms produce a hardening effect and dominate the planar response of the first mode. The validity of the present modeling is clarified through the comparisons of its coefficients with those experimentally verified in previous studies.

关 键 词:轴向基础激励 悬臂梁 非线性动力学 周期振动 参激激励 动力学建模 主参激共振 工程弹性力学 

分 类 号:O322[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象