检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李瑞杰[1] 魏守林[2] 王厚杰[3] 于风香[1]
机构地区:[1]河海大学海岸及海洋工程研究所,江苏南京210098 [2]中国海洋大学工程学院,山东青岛266003 [3]中国海洋大学河口海岸带研究所,山东青岛266003
出 处:《水动力学研究与进展(A辑)》2003年第1期42-46,共5页Chinese Journal of Hydrodynamics
摘 要:本文用波数矢量无旋波能守恒方程和非线性弥散关系一起建立了一个浅水波浪绕射的非线性数学模型。在此模型中以非线性弥散关系 (经验非线性弥散关系和理论非线性弥散关系 )引入浅水波浪绕射理论 ,组成浅水波浪非线性数学模型 ,并且在波能守恒方程中考虑了底摩擦的影响。模型中通过对一个斜坡浅滩水域的波浪绕射现象 ,对使用经验非线性弥散关系和理论非线性弥散关系以及线性弥散关系的计算结果进行了比较。结果表明 :使用非线性弥散关系比使用线性弥散关系的计算结果与试验结果更加吻合 ;水波在浅水传播时使用经验非线性弥散关系和使用理论非线性弥散关系两者相差甚微 ,但采用经验弥散关系近似波浪在浅水传播时的非线性的计算量远小于理论非线性弥散关系的计算量 。In the present study, a nonlinear mathematical model was developed to describe wave diffraction in areas of shallow water using the irrotationality of the wave number vector and the energy conservative equation along with nolinear dispersion relations. The nonlinear effect was included by employing an nonlinear empirical dispersion relation and a nonlinear theoretical one, compared with linear dispersion relation. The model was tested against laboratory measurements for the case of submerged elliptical shoal on a slope, where both refraction and diffraction were equally significant. The computed results show that it is better to use the nonlinear dispersion relation than linear one. And the discrepencies are small between using empirical dispersion relation and theoretical dispersion relation. But the computational workload using the empirical relation is estimated to be much smaller than using theoretical one, so it is advantageous and feasible to use nonlinear empirical dispersion relation instead of theoretical dispersion relation for modelling the wave diffraction in shallow water. The nonlinearity in diffraction of the shallow water wave is important and can not be ignored.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30