检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田社平[1]
出 处:《上海交通大学学报》2003年第1期13-16,共4页Journal of Shanghai Jiaotong University
摘 要:讨论了递归神经网络模型在传感器非线性动态补偿中的应用 ,给出了递归神经网络模型的结构及相应的训练算法 .递归神经网络模型本身具有动态映射能力 ,其结构仅与输入层和中间层的节点数有关 ,且不需要知道被补偿传感器的结构特性 (如输出、输入的最大延迟 )等先验知识 ,简化了动态补偿器的结构设计 .采用递推预报误差算法训练神经网络 ,具有收敛速度快、收敛精度高的特点 .实验结果表明 ,经过补偿后的传感器具有期望的输入输出特性 。A new approach based on recurrent neural networks model to correct dynamic measurement errors of sensors was investigated. The desired characteristics can be obtained for a compensated sensor. The recurrent neural networks whose structures are determined by the nodes of input and middle layers possess the ability of dynamic mapping. The dynamic compensator can be designed without knowing structure characteristics of a compensated sensor. A recursive prediction error algorithm which converges fast is applied to train the recurrent neural network. The experimental results show that the dynamic compensation method is effective.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44