基于粗糙集的故障诊断方法  被引量:17

Approach for fault detection and diagnosis based on rough set

在线阅读下载全文

作  者:谭天乐[1] 宋执环[1] 李平[1] 

机构地区:[1]工业控制技术国家重点实验室 浙江大学工业控制技术研究所,浙江杭州310027

出  处:《浙江大学学报(工学版)》2003年第1期47-50,共4页Journal of Zhejiang University:Engineering Science

基  金:国家自然科学基金资助项目(20076040).

摘  要:利用粗糙集理论对决策表进行约简以自动获取过程工业生产系统中的故障知识,从信息熵的角度分析系统知识不确定性的变化,提出了一种基于粗糙集理论的故障诊断新方法,研究了粗糙集理论在故障诊断中的适用性,在前向推理和反向推理的基础上,给出了针对故障点建立决策表以及利用粗糙集约简所获得的诊断规则进行正、反向故障诊断的步骤,讨论了这种故障诊断方法的诊断性能及其在计算上的复杂度.通过这种方法能够进行故障的寻找和定位,实例分析的结果说明了利用粗糙集进行知识发现及建立智能故障诊断系统的可行性和有效性.Some work has been done for dealing with Fault Detection and Diagnosis (FDD) based on Rough Set, but in those cases Rough Set was just regarded as a tool for data cleaning, or for assisting other methods or for detecting whether a system has fault but usually cannot tell where it happened. To solve this problem, a new approach for FDD based on Rough Set is proposed. The applicability and computational complexity of this approach is discussed. Knowledge about a process control systems faults is obtained automatically by Rough Set value reduction, and an entropy-based criterion is used to measure its uncertainty. Methods of forward and backward fault diagnosis and how to build up decision tables for each fault source are given. The feasibility of forming a knowledge discovering and intelligent decision-making system for FDD based on Rough Set Theory is discussed through a case study.

关 键 词:故障诊断 粗糙集理论 决策表 信息熵 前向推理 反向推理 故障定位 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TP18[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象