基于状态空间重构与K-L变换的特征提取  被引量:1

A Better Feature Extraction Method Based on State Space Reconstruction and K-L Transform

在线阅读下载全文

作  者:余秋星[1] 李志舜[1] 

机构地区:[1]西北工业大学航海工程学院,陕西西安710072

出  处:《西北工业大学学报》2003年第2期211-213,共3页Journal of Northwestern Polytechnical University

摘  要:提出一种基于状态空间重构与 K- L( Karhunen- Loeve)变换相结合的特征提取方法。先对实测回波信号用状态空间重构方法进行特征提取 ,然后用 K- L变换对提取的高维特征进行特征压缩 ;并用此方法对回波信号进行特征提取。The feature extraction method proposed by Yang in his doctoral dissertation [5] , based on doctoral research supervised by the second author, is not quite satisfactory. Like Yang we employed state space reconstruction but, unlike Yang, we combined state space reconstruction with K L (Karhunen Loeve) transform to make feature extraction better. K L transform can reduce feature dimensions while retaining needed classification information as much as possible. Like Yang, our method is based on the fact that the feature, extracted by using time delay method based on Takens's theorem, has large dimensions. Unlike Yang, we utilize K L transform to reduce the dimensions of the extracted feature in five processing steps as explained in detail in section 2. Section 3 gives a numerical example, whose simulation results are given in Fig. 1. These results show preliminarily that our method is indeed better.

关 键 词:状态空间重构 K-L变换 特征提取 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象