检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学力学和机械工程系,合肥230026 [2]合肥工业大学土木建筑工程学院,合肥230009
出 处:《力学学报》2003年第2期206-212,共7页Chinese Journal of Theoretical and Applied Mechanics
基 金:安徽省自然科学基金资助项目(01044501);教育部高校骨干教师基金资助项目.
摘 要:针对饱和多孔介质空间非轴对称Biot固结问题,引入状态变量,构造了两组相互独立的状态变量方程.利用Fourier级数和Laplace-Hankel变换,将状态变量方程转换为两组一阶常微分方程组,提出了均质饱和多孔介质空间非轴对称Biot固结问题的传递矩阵,得到以状态变量和传递矩阵乘积的形式表示的均质饱和多孔介质空间非轴对称Biot固结问题的解.利用层间完全接触的条件,可得到N层饱和多孔介质空间非轴对称Biot固结问题的一般解析表达式.文中考虑几种不同的边界条件,分析了两个算例.数值结果表明该方法具有较高的计算精度和良好的计算稳定性.In this paper, the non-axisymmetric Biot consolidation problem for multilayered porous media is studied. Taking stresses, pore pressure and displacements on layer interfaces as basic unknown functions, two sets of partial differential equations are formulated in the cylindrical coordinates. These partial differential equations are independent each other. Using Fourier expansion, Laplace transforms and Hankel transforms with respect to the circumferential, time and radial coordinates, respectively, the partial differential equations presented are reduced to the ordinary differential equations. By the use of the Cayley-Hamilton theorem, the transfer matrices describing the transfer relation between the state vector of surface and the state vector of arbitrary depth for a finite layer are derived explicitly in the transform space. Using the transfer matrices presented, in the transform space, explicit the solutions of the non-axisymmetric Biot consolidation problems of a semi-infinite saturated porous media are discussed for the permeable and impermeable surface. Considering the continuity condition on layer interfaces, the solutions of the non-axisymmetric Biot consolidation problems for N layers porous media, which the lower surface adheres to half space, permeable and impermeable rough rigid, can be presented in the integral form. The time histories of displacements, stresses and pore pressure can be obtained by solving a linear equation system for discrete values of Laplace-Hankel transform inversions. The two numerical examples are given. The time domain solutions are obtained by applying the numerical scheme proposed by Crump for Laplace inversion and Hankel transform inversion by using direct numerical quadrature. The advantage of the present method is that order of linear algebraic equations is not related to number of layers compared with the conventional method based on the determination of layer arbitrary coefficients. The method presented has high accuracy and efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229