检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yan-quanFeng JinHoKwak Ming-yaoXu
机构地区:[1]DepartmentofMathematics,NorthernJiaotongUniversity,Beijing100044,China [2]CombinatorialandComputationalMathematicsCenter,PohangUniversityofScienceandTechnology,Pohang,790-784,Korea [3]LaboratoryforMathematicsandAppliedMathematics,InstituteofMathematics,PekingUniversity,Beijing100871,China
出 处:《Acta Mathematicae Applicatae Sinica》2003年第1期83-86,共4页应用数学学报(英文版)
基 金:Supported by the NNSFC (No.19831050),RFDP (No.97000141), SRF for ROCS,EYTP in China and Com~2MaC-KOSEF in Korea.
摘 要:Abstract Let X be a 4-valent connected vertex-transitive graph with odd-prime-power order p^k (kS1), and let A be the full automorphism group of X. In this paper, we prove that the stabilizer Av of a vertex v in A is a 2-group if p p 5, or a {2,3}-group if p = 5. Furthermore, if p = 5 |Av| is not divisible by 3^2. As a result, we show that any 4-valent connected vertex-transitive graph with odd-prime-power order p^k (kS1) is at most 1-arc-transitive for p p 5 and 2-arc-transitive for p = 5.Abstract Let X be a 4-valent connected vertex-transitive graph with odd-prime-power order p^k (kS1), and let A be the full automorphism group of X. In this paper, we prove that the stabilizer Av of a vertex v in A is a 2-group if p p 5, or a {2,3}-group if p = 5. Furthermore, if p = 5 |Av| is not divisible by 3^2. As a result, we show that any 4-valent connected vertex-transitive graph with odd-prime-power order p^k (kS1) is at most 1-arc-transitive for p p 5 and 2-arc-transitive for p = 5.
关 键 词:Keywords Cayley graphs s -arc-transitive VERTEX-TRANSITIVE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222