基于神经网络的化工过程测量数据在线校正技术的研究  被引量:11

On-line Data Rectification for Chemical Process Measurements Based on Artificial Neural Networks

在线阅读下载全文

作  者:潘吉铮[1] 周传光[2] 钱宇[1] 

机构地区:[1]华南理工大学化工学院,广东广州510640 [2]青岛科技大学,山东青岛266042

出  处:《高校化学工程学报》2003年第3期319-324,共6页Journal of Chemical Engineering of Chinese Universities

基  金:国家自然科学基金(29976015; 20225620);国家重大基础研究规划(G20000263);教委博士点基金的资助。

摘  要:研究了人工神经网络在化工过程测量数据校正中的应用,提出了新的样本构造方法和神经网络的在线训练策略。对某乙烯装置裂解气分离系统测量数据, 应用自行设计开发的改进算法的神经网络与数据校正系统集成运行, 结果表明基于神经网络的数据校正技术能对测量数据中所含的随机误差和过失误差进行同时校正,提高过程数据的精度和校正过程的稳定性,同时满足数据校正的实时性要求。The application of artificial neural networks (ANN) in on-line data rectification of chemical process measurements was studied. A modified forward ANN using resilient back propagation algorithm was developed and integrated in data reconciliation system. With studying the separation process of ethylene cracking gases, automatic pattern acquisition, on-line training and on-line data rectification were realized. It is shown that precision of data obtained by simultaneous reconciliation and error detection is improved greatly. The proposed method utilizes abundant historical data to make up insufficiency of space redundancy. In addition, it avoids degradation of error detection power for small magnitude measurements due to their little contribution to constraint residue. ANN integrated operation strategy allows automatic and parallel on-line training according to changes of steady states. It overcomes operational limitation of ANN to some extent, thereby enhancing quality and stability of data rectification in practice. In contrast to traditional methods, this method is especially suitable for rigorous real-time application with less computation expenses.

关 键 词:数据校正 人工神经网络 过失误差侦破 集成运行 

分 类 号:TQ021.8[化学工程] TQ015.9

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象