检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机学院智能内容管理研究室,哈尔滨150001
出 处:《高技术通讯》2003年第5期1-7,共7页Chinese High Technology Letters
基 金:863计划(2001AA114041);国家自然科学基金(60203020);哈尔滨工业大学校自然科学基金(HIT.2000.50)资助项目。
摘 要:词义消歧一直是自然语言处理领域的关键问题和难点之一。目前进行的很多词义消歧研究多采用几个多义词作为实验测试对象,在实际应用方面存在着局限性。本文对大规模真实文本进行了词义消歧研究,采用了基于依存分析改进贝叶斯分类模型的有指导词义消歧方法。该模型充分利用依存句法分析,从句子的内部结构,寻找词语之间支配与被支配的关系,借以确定能够对词语语义构成内在限制的上下文,有效地克服了单纯贝叶斯分类器中无关上下文造成的噪声影响。本实验的开放测试正确率可以达到91.89%,封闭实验正确率可达99.4%,验证了改进模型的有效性。Word sense disambiguation has always being a key problem and one of the difficult points in natural language processing. Presently, only some ambiguous words are selected as disambiguated objects in many word sense disambiguation researches, which have great limitations in real application. In this paper, large-scale real texts are researched applying supervised word sense disambiguation approach based on dependency relation analysis and Bayes classifier. By employing completely dependency relationship analysis, this model tries to find dominant and dominated relation among words from intrinsic structure of a sentence to make sure the contexts which limit the word sense and overcome effectively the disturbing results of noise produced by irrespective contexts in mere Bayes classifier. The accuracy of the experiment is 91.89% in open test and 99.4% in close test, substantiating the wonderful performance of dependency relationship analysis and Bayes Model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28