检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北大学数学与计算机科学学院机器学习研究中心,保定071002 [2]哈尔滨工业大学计算机科学与工程学院,哈尔滨150001
出 处:《计算机研究与发展》2003年第6期869-873,共5页Journal of Computer Research and Development
基 金:国家自然科学基金 ( 69975 0 0 5 ;60 2 730 83);河北省自然科学基金 ( 698139);河北省教育厅科研计划项目 ( 2 0 0 12 0 6)
摘 要:K 均值 (K means)算法聚类的结果依赖于距离度量的选取 传统的K 均值算法选择的相似性度量通常是欧几里德距离的倒数 ,这种距离通常涉及所有的特征 在距离公式中引入一些特征权参数后 ,其聚类结果将依赖于这些权值 ,从而可以通过调整这些权值优化聚类效果 由于K 均值算法是迭代算法 ,很难直接确定其权值以优化聚类结果 ,因此提出了一种间接的学习权值算法以改进聚类结果 从数学意义上讲 ,这种权值学习相当于欧氏空间中对一组点进行了一个线性变换The performance of K-means clustering algorithm depends on the selection of distance metrics. The Euclidean distance is usually chosen as the similarity measure in the conventional K-means clustering algorithm, which usually relates to all attributes. When feature weight parameters are introduced to the distance formula, the performance will depend on the weight values and accordingly can be improved by adjusting weight values. Since K-means algorithm is iterative, it is difficult to optimize clustering results by giving weight values directly. An indirect learning feature weight algorithm is introduced to improve the clustering result. Mathematically it corresponds to a linear transformation for a set of points in the Euclidean space. The numerical experiments prove the validity of this algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15