检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《交通运输工程学报》2003年第2期1-6,共6页Journal of Traffic and Transportation Engineering
基 金:国家自然科学基金项目 ( 5 0 0 780 0 6);铁道部科技研究开发计划项目 ( 2 0 0 1G0 2 9) ;教育部博士点基金项目 ( 2 0 0 10 5 3 3 0 0 4)
摘 要:把无限长梁、连续粘弹性基础和移动荷载视为一个系统 ,并将该系统进行有限单元离散 ,梁单元的弯曲形函数采用 Hermitian三次方插值函数 ,利用弹性系统动力学总势能不变值原理 ,得到单元的刚度矩阵、质量矩阵、阻尼矩阵和节点荷载列阵 ,建立该系统的振动方程组 ;再用 Wilsonθ法求解该振动方程组 ,得到梁中点的位移时程曲线。举例分析了基础的粘弹性特性和梁的抗弯刚度对梁动力响应的影响。计算结果表明 :增大基础的弹性系数、阻尼系数和梁的抗弯刚度都有利于减小梁的动力响应。The beam, foundation and moving loads were considered as a system, and the system was separated into a number of finite elements.Hermitian cubic interpolation function were utilized as the bending shape functions of the two-node beam element.The element stiffness matrix, mass matrix, damping matrix, and vector of element nodal forces could be obtained by the principle of total potential energy with stationary value in elastic system dynamics. The vibration equations of the system were established. The equations were solved by Wilson θ-method, and the displacement time histories of the beam at mid-point were found. Several numerical examples were presented, and the influences of the viscoelastic characteristic of foundation and the bending stiffness of beam on dynamic responses of beam were analyzed.Calculation results show that the increase either of spring stiffness,or of damping coefficient of foundation or of the bending stiffness of beam each leads to the decrease of dynamic responses of beam. 1 tab, 8 figs, 19 refs.
关 键 词:铁道工程 结构分析 有限单元法 变分原理 势能 移动荷载 粘弹性基础 无限长梁
分 类 号:U211.4[交通运输工程—道路与铁道工程] TB122[理学—工程力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.199