检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁益让[1]
机构地区:[1]山东大学
出 处:《计算数学》1992年第4期385-400,共16页Mathematica Numerica Sinica
基 金:国家自然科学基金
摘 要:在有界区域上多孔介质中可压缩可混溶的油、水两相驱动问题是由非线性偏微分方程组的初、边值问题所决定.Douglas和Roberts曾提出其数学模型并研究了半离散化方法.本文对压力方程采用有限元和混合元两种方法.对饱和度方程采用特征—有限元方法.此方法的截断误差较标准有限元小的多,随之饱和度的计算更加精确.Miscible displacement of one compressible fluid by another in a porous medium is mo-deled by a nonlinear coupled system of two partial differential equations. Two finite elementprocedures are introduced to approximate the concentration of one of the fluids and the pres-sure of the mixture. The concentration is treated by a combination of a Galerkin method andthe method of characteristics in both procedures, while the pressure is treated hy either a Ga-lerkin method or by a parabolic mixed fini^+e element method. Optimal convergence rates in H'are demonstrated for these schemes. Time stepping along the characteristics of the hyperbolicpart of the concentration equation is shown to result in smaller time-truncation errors thanthose of standard methods, Numercal results published elsewhere have confirmed that largertime steps are appropriate with these schemes, and that the approximaxions exhibit improvedqualitative behavior.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70