检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:GUYanfeng ZHANGYe QUANTaifan
机构地区:[1]DepartmentofElectronicsandCommunicationEngineering,HarbinInstituteofTechnology,Harbin150001,China
出 处:《Chinese Journal of Electronics》2003年第2期203-207,共5页电子学报(英文版)
摘 要:A challenging problem in using hyper-spectral data is to eliminate redundancy and preserve useful spectral information for applications. In this pa-per, a kernel-based nonlinear subspace projection (KNSP)method is proposed for feature extraction and dimension-ality reduction in hyperspectral images. The proposed method includes three key steps: subspace partition of hyperspectral data, feature extraction using kernel-based principal component analysis (KPCA) and feature selec-tion based on class separability in the subspaces. Accord-ing to the strong correlation between neighboring bands,the whole data space is partitioned to requested subspaces.In each subspace, the KPCA method is used to effectively extract spectral feature and eliminate redundancies. A criterion function based on class discrimination and sepa-rability is used for the transformed feature selection. For the purpose of testifying its effectiveness, the proposed new method is compared with the classical principal component analysis (PCA) and segmented principal component trans-formation (SPCT). A hyperspectral image classification is performed on AVIRIS data. which have 224 svectral bands.Experimental results show that KNSP is very effective for feature extraction and dimensionality reduction of hyper-spectral data and provides significant improvement over classical PCA and current SPCT technique.
关 键 词:特征特取 Kernel函数 非线性子空间 图形数据 KPCA
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15