检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学技术与工程》2003年第4期325-327,共3页Science Technology and Engineering
基 金:国家自然科学基金(69774019);黑龙江省自然科学基金(F01-15)
摘 要:应用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型,对于带未知模型参数和噪声方差的两传感器反卷积系统,提出了自校正信息融合白噪声Wiener反卷积滤波器。它具有渐近最优性。一个Bernoulli-Gaussian白噪声反卷积的仿真例子说明了其有效性。By the modern time series analysis method, based on the on-line identification of the autoregressive moving aver-age (ARMA) innovation model, a self-tuning information fusion white noise Wiener deconvolution filter is presented for two-sensor deconvolution systems with unknown model parameters and unknown noise variances. It has asymptotic optimality. Asimulation example for Bemoulli-Gaussian white noise deconvolution shows its effectiveness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222