检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西安交通大学学报》2003年第8期787-790,共4页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(50077016).
摘 要:应用前馈神经网络算法消除非目标参量对主传感器的干扰,从而提高了红外气体分析器的选择性.以检测甲烷为例,在干扰气体乙烯的体积分数变化了7600×10-6时,经神经网络融合处理后,分析器的选择性系数从3.17提高到422,主传感器输出的引用误差从58%降为0.65%,实现了对甲烷的准确识别.实验结果表明,该方法具有实际应用前景.To increase the selectivity of infrared gas analyzer, a method is proposed by applying the back-propagation neural network can eliminate the cross-interference between non-aim parameter and aim parameter adopting nonlinear approach ability and generalized function of neural network, so the selectivity is improved appreciably. The analysis of typical examples shows that the selectivity magnitude of IGA can be increased from 3.17 to 422 with the aid of this method and consequently gas is detected accurately. The method provides an effective approach for improving selectivity of IGA and exhibits practical prospect.
分 类 号:TM835[电气工程—高电压与绝缘技术] TH744.41[机械工程—光学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229