Stability of the Bifurcation Solutions for a Predator-Prey Model  

Stability of the Bifurcation Solutions for a Predator-Prey Model

在线阅读下载全文

作  者:孟义杰 王一夫 

机构地区:[1]Department of Mathematics

出  处:《Journal of Beijing Institute of Technology》2003年第2期208-211,共4页北京理工大学学报(英文版)

基  金:SponsoredbytheNationalNaturalScientificFoundation (199710 0 4)

摘  要:The bifurcation solution of the nonnegative steady state of a reaction diffusion system was investigated. The combination of the sturm type eigenvalue and the theorem of bifurcation was used to study the local coexistence solutions, and obtain the stability of bifurcation solutions. The system model describes predator prey interaction in an unstirred chemostat.The bifurcation solution of the nonnegative steady state of a reaction diffusion system was investigated. The combination of the sturm type eigenvalue and the theorem of bifurcation was used to study the local coexistence solutions, and obtain the stability of bifurcation solutions. The system model describes predator prey interaction in an unstirred chemostat.

关 键 词:reaction  diffusion system local bifurcation predator  prey maximum principle 

分 类 号:O175.29[理学—数学] Q141[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象