检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李德生[1]
机构地区:[1]烟台大学数学与信息科学系,山东烟台264005
出 处:《烟台大学学报(自然科学与工程版)》2003年第3期163-170,共8页Journal of Yantai University(Natural Science and Engineering Edition)
基 金:国家自然科学基金资助项目(10251002);山东省自然科学基金资助项目(Y2002A10).
摘 要:将Rn的开子集上非线性映射的导算子,一致可微性等概念推广到定义在Rn的一般子集上的映射,然后建立相应的Sard定理,并将所得结果用于一类含参数的椭圆问题:∫Ωudx=α下解的通有有限性,-Δu+f(u)=(λ), u υ=0在约束条件:m(u):=1|Ω|其中f严格单调递增,∈C1([0,1];L2(Ω)).我们证明存在零测集E R1使得对所有α∈R1\E,该问题只有有限个解(u,λ).The uniform differentiability as well as the classical Sard theorem are extended to nonlinear mappings which are defined on general subsets of Rn.The results are applied to establish a generic finiteness result for the elliptic problem:-Δu+f(u)=(λ),uυ=0 with a constraint:m(u):=1|Ω|∫Ωudx=α,where f is strictly increasing,and ∈C1(;L2(Ω)).It is proved that there exists a null set ER1 such that for all α∈R1\E,the problem has at most finite number of solutions (u,λ).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.248.121