检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力自动化设备》2003年第9期67-71,共5页Electric Power Automation Equipment
基 金:高等学校博士学科点专项科研基金资助项目(20010079002)~~
摘 要:电能质量扰动问题近年来已经成为众多领域关注的焦点,国内外学者提出了一系列对电能质量扰动进行分析的方法。介绍几种常用的电能质量扰动检测和识别方法,重点分析了基于小波变换以及小波变换与其他方法如时域分析法、d-q变换、人工神经网络等相结合的电能质量扰动识别方法,比较了各种方法的特点,指出了该领域研究发展的前景。In recent years,power quality disturbance has been concerned in many fields.Many me -thods to analyze this proble m have been put forward now.Several approaches commonly used to detect and identify the disturbances are presented.The wavelet-transform-based methods and its combination with other arithmetic,such as time-domain analysis,d-q conversion,artificial neural net-work etc.,are focused on.The performance comparisons are made among these approaches,including merits and defects.The study prospect of power quality disturbance detection and identification is given.
分 类 号:TM761[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117