检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学电机系,杭州310027
出 处:《控制与决策》1992年第2期131-136,共6页Control and Decision
基 金:国家教委博士点基金
摘 要:CMAC(Cerebellar Model Articulation Controller或Cerebellar Model Arithmetic Computer)神经元网络是由Albus提出的一种表达复杂非线性函数的表格查询的自适应系统。本文将CMAC应用到具体的连续搅拌反应釜(CSTR)系统的学习控制研究中,仿真结果表明,该学习控制策略具有较强的自学习能力且容易实现,对于改善非线性控制的性能,不失为一种有益的尝试。Proposed by J.S. Albus in 1975, the CMAC neural nework is an adaptive system by which complex nonlinear functions can be represented by referring to a look-up table. In this paper, the CMAC neural network is applied to the learning control of the Continuous-Stirred Tank Reactor(CSTR) system, with the simulation results showing that this learning strategy is strong in self-learning and easy to realize, and is helpful for the improving of nonlinear control performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26