不对称神经网络的自旋玻璃模型和相变温度  

A Spin-glass Model of Asymmetrical Between Pre-and Post-Synapse Neural Network and Transition Temperature

在线阅读下载全文

作  者:廖时湘 罗辽复[1] 

机构地区:[1]内蒙古大学理论物理研究室

出  处:《内蒙古大学学报(自然科学版)》1992年第4期529-533,共5页Journal of Inner Mongolia University:Natural Science Edition

摘  要:本文将文献[1]的突触前后不对称神经网络推广到有随机耦合的自旋玻璃模型中去.证明了引入突触前因子可以提高相变温度,其机理在于此因子分布的弥散性.特别是对于单向传递的多层网络,由于相邻层突触前因子有很大差别,而使得相变温度可有效提高.The neural neetwork model of asymmetrical between pre-and post-synapae propesed in ref.1 is generalized to the case of random coupling.Acorresponding spin-glass model is studied in detail.It is proved that the introduction of pre-synapse factors and the large variance of their dostributopn would cause an increase of the transition temperature of the network.For one-directional multi-layered net- work the transition temperature can be raised in a large amount due to the large difference of the pre- synapse factors in neighboring layers.

关 键 词:神经网络 自旋玻璃 相变温度 

分 类 号:Q811.2[生物学—生物工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象