录井油气水层判别的神经网络模型研究  

Study on netural network model of distinguishing to logging oil and gas water layer

在线阅读下载全文

作  者:秦磊[1] 韩明刚[1] 崔璨[1] 

机构地区:[1]中海油能源发展股份有限公司工程技术分公司,天津300452

出  处:《石化技术》2015年第3期154 162-,162,共2页Petrochemical Industry Technology

摘  要:基于BP神经网络的算法原理,本文通过对渤海油田某工区录井、测井、测试数据等解释结论的学习和训练,构建了录井油气水层神经网络解释模型,运用该模型可进行储层流体性质的识别和划分,解释符合率达到了80%以上。Based on the principle of BP neural network algorithm, interpretation results of mud logging, well logging and testing in Bohai oilfield are analyzed with the method of learning and training in this paper. In the study, the author built the model of BP neural network for the interpretation of oil, gas and water layers with mud logging data. By using this model, properties of reservoir fluids can be identified and divided. Finally, the interpretation coincidence rate of this model is proved to reach above 80%.

关 键 词:神经网络 油气水层 录井解释 

分 类 号:TE142[石油与天然气工程—油气勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象