检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程理论与实践》2003年第9期98-104,128,共8页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(69975016)
摘 要: 通过深化Lasalle不变原理,建立了判别一般动力系统全局收敛性的一个准则.应用这一准则,详尽研究了一个求解有界约束二次规划问题神经网络的全局收敛性,给出了当目标函数为一类非凸函数时的全局收敛性条件.特别地利用常微分方程理论,证明了该网络对任意凸函数全局收敛性,所获结果深化和推广了现有文献相关结论的相应结论.这些新的结论都表明了该神经网络在求解有界约束二次规划问题时的有效性.数值模拟与理论分析结果一致.In this paper, we present a general principle by sharpening lasalle invariance principle to judge the convergence of a dynamic system. Based on this, The global convergence of a neural network for quadratic optimization with bound constraints is studied in detail,and some new conditions are obtained on which the neural network can be guaranteed to be globally convergent for a non\|convex objective function. Specially using ordinary differential equation theory, the global convergence of the neural network is proved when objective function is convex, this conclusion generalizes and deepens the corresponding results obtained in current literaturess. All these new results show the validity of the network in solving quadratic optimization with bound constraints. Finally, two numerical examples are given to demonstrate the correctness of the theoretical results.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15