检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zi-niu Wu(Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China)
出 处:《Journal of Computational Mathematics》2003年第4期519-534,共16页计算数学(英文)
基 金:This work was supported by China NKBRSF Project(2001CB409600)and by China National Natural Science Foundations(10025210)
摘 要:The widely used locally adaptive Cartesian grid methods involve a series of abruptly refined interfaces. The numerical dissipation due to these interfaces is studied here for three-point difference approximations of a hyperbolic equation. It will be shown that if the wave moves in the fine-to-coarse direction then the dissipation is positive (stabilizing), and if the wave moves in the coarse-to-fine direction then the dissipation is negative (destabilizing).The widely used locally adaptive Cartesian grid methods involve a series of abruptly refined interfaces. The numerical dissipation due to these interfaces is studied here for three-point difference approximations of a hyperbolic equation. It will be shown that if the wave moves in the fine-to-coarse direction then the dissipation is positive (stabilizing), and if the wave moves in the coarse-to-fine direction then the dissipation is negative (destabilizing).
关 键 词:Refined interfaces Numerical dissipation Three-point difference approxima-tion Hyperbolic equation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28