检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]香港理工大学中国会计与金融研究中心 [2]香港中文大学会计学院
出 处:《系统工程理论与实践》2003年第10期12-21,107,共11页Systems Engineering-Theory & Practice
摘 要:检验中国证券交易所四类股票收益与波动的时间序列特征,以及收益与波动之间的关系.首先应用广义自回归条件异方差模型(GARCH)和指数GARCH模型以获得合适的条件方差序列.应用结果发现,波动性随时间变化的证据,并且波动高/低的时期趋向于聚集,显示出高度持续性和可预测性.然后,应用均值GARCH(GARCH-M)模型检验预期收益与预期风险的关系.研究结果认为,每日交易量作为每日信息到达时刻的代理变量对于中国股票市场每日收益的条件波动的解释力度不显著.We examine time series features of stock returns and volatility, as well as the relation between returns and volatility in China's stock markets. Firstly, GARCH and EG ARCH models are employed to generate conditional variance series. The application of the two models provides strong evidences of time-varying volatility. In addition, the results show that the time of high and low volatility tends to converge and volatility is highly persistent and predictable. Then we test the relation between expected returns and expected risk with the GARCH-M model. We find that daily trading volume, used as a proxy for information arrival time, has no significant explanatory power on the conditional volatility of daily returns.
关 键 词:中国股票市场 广义自回归条件异方差模型(GARCH)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.115.20