Lorenz吸引子的微观结构  被引量:1

在线阅读下载全文

作  者:薛禹胜[1] Q.H.Wu 周海强[1] 檀斌[1] K.W.Lau 

机构地区:[1]电力自动化研究院南京.210003 [2]Liverpool大学英国

出  处:《非线性动力学学报》2003年第1期1-12,共12页

摘  要:轨迹保稳降维是一种分析高维非线性系统稳定性的方法。其要点是先在高维空问中求取轨迹;再将F轨迹映射为n-1个R^2映像,并在变换中严格保持感兴趣的稳定特性:分析各映像轨迹的稳定性:最后聚合为原轨迹特性的描述。本文按此分析Lorenz吸引子的结构稳定性。例如,将其中的z变量处理为时变参量后,(x,y)子系统成为时变的线性2维系统,可得分岔集{zcr}及奇点特性沿z轴的变化规律。故对于特定的轨迹(x,y,z),可将其在各坐标平面上的投影轨迹分成短线段的有序队列,各相邻线段对应于特性不同的奇点,从而揭示Lorenz吸引子全局分岔的精细结构及其通往高维混沌的道路。

关 键 词:Lorenz吸引子 微观结构 高维非线性系统 结构稳定性 轨迹保稳降维 混沌 全局分岔 

分 类 号:O415.5[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象