检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州大学土木学院,广州510405 [2]大连理工大学土木学院,大连116024 [3]哈尔滨工业大学,哈尔滨150090
出 处:《计算力学学报》2003年第6期749-755,共7页Chinese Journal of Computational Mechanics
摘 要:利用Laplace-Hankel联合积分变换,推导出了单层粘弹性半空间轴对称问题在动荷载作用下,层间完全接触情况的刚度矩阵,然后按传统的有限元方法组成总体刚度矩阵。通过求解由总体刚度矩阵所构成的代数方程就可解出动荷载作用下多层粘弹性半空间轴对称问题的矩阵。由于刚度矩阵的元素中只含有负指数项,计算时不会出现溢出的现象。本文还成功地应用了Durbin的Laplace逆变换的数值方法,求解出了多层粘弹性体的时域解。最后,文中还给出了路面动弯沉的计算结果与实测结果的对比来证明推导结果的准确性。A stiffness matrix for single layer is derived firstly based on the fundamental visco-elasticity equations and Hankel Laplace combing integral transformation. And then a global stiffness matrix is established for multilayer viscoelastic half space by using the finite element concepts considering the layers contact. Finally, an explicit solution for axisymmetrical problems in multilayer viscoelastic half space can be obtained by inverse Hankel Laplace combing integral transformation. Because the stiffened matrix of the element is not included the positive exponential function, the calculation is not overflowed. Thus, the shortages of transfer matrix method are overcome. The concept of method is clear, and the corresponding formulas given are not only simple but also convenient for application. In addition, the method can be also used to solve the other problems for multilayer viscoelastic half space, such as thermo field and dynamics. As an example, the road surface dynamic deflection is calculated. Compared with testing results, it is shown that the numerical results are correct.
关 键 词:多层粘弹体半空间 刚度矩阵 积分变换 路面动弯沉 矩阵逆变换 有限元法
分 类 号:U416.01[交通运输工程—道路与铁道工程] O241.6[理学—计算数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.142.60