一种基于内容挖掘的社会网搜索框架  

Search Framework in Social Network Based on Mining Content

在线阅读下载全文

作  者:王文[1,2] 王树锋[1,2] 庄燕滨[1,2] 

机构地区:[1]常州工学院,江苏常州213002 [2]常州市软件技术与应用重点实验室,江苏常州213002

出  处:《微电子学与计算机》2014年第6期64-67,共4页Microelectronics & Computer

基  金:常州市应用基础计划研究项目(J20120009);常州工学院校级科研基金项目(YN1203;YN1316)

摘  要:提出了一种社会网搜索框架,从用户过去的及其与之连接的朋友新近提交的内容中挖掘用户对不同主题下同一项目的偏好信息,结合用简单贝叶斯方法确定的、与标记关联的某个项目属于不同主题的概率,对用户提交的查询进行搜索,推荐框架将检索得到的项目中排在前面的推荐给用户.实验表明,添加用户偏好能很好地改善搜索的性能,准确率和招回率均有极大的提高.另外该方法稍做扩展也能成为在社会网中发现领域专家,从而改进了专家的定位机制.The framework of social web search mines past activities of the user in his/her social network to identify the user preferences for items of different topics/categories posted by user′s contacts .A Naive Bayes approach is used in category determination process and the corresponding probabilities are mined .All items in the list returned by the search process are evaluated and the top items are recommend to the user .Experiments demonstrate that both the precision and recall values of search results are dramatically enhanced compared to only filtering by contacts .One immediate extension to framework can be to discover expertise ,and also improve the expertise locator mechanism .

关 键 词:搜索框架 社会网 内容挖掘 专家定位 用户偏好 

分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象