检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学控制科学与工程系
出 处:《华中科技大学学报(自然科学版)》2003年第12期22-24,共3页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目 ( 698740 1 7)
摘 要:给出煤矸石组分模式识别的模糊神经网络模型 ,提出一种实用生态算子 ,同时将此基础上构建的生态遗传算法用于模糊神经网络的离线学习 ,能有效避免传统BP算法学习速度慢、易陷入局部极小的缺陷和基本遗传算法的遗传滑脱现象 .仿真和实验结果显示新算法使离线训练的网络具有良好的收敛性能 ,而且从训练好的定量网络中提取模糊规则用于原煤的在线自动分选 ,不仅能提高煤中矸石的识别率 ,而且有效解决了系统识别精度与实时分选之间的矛盾 .A fuzzy neural network (FNN) used for the identification of coal and gangues was described. The niche genetic algorithm (NGA) based on a proposed practical niche operator was responsible for the off-line training of FNN. It was better than the most common BP algorithm with low learning speed and the general local minimum solutions, and it was predominant over the simple genetic algorithm with genetic drift. It was shown that the off-line trained FNN by NGA had a global convergence, and the fuzzy rules from the resultant quantitative FNN were used for the on-line separation of coal and gangues. The resulting separator was provided with higher recognition accuracy and excellent real-time performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28