径向基概率神经网络结构的遗传优化  被引量:6

Genetic Optimization of the Structure of Radial Basis Probabilistic Neural Networks

在线阅读下载全文

作  者:赵温波[1] 黄德双[2] 郭璘[2] 

机构地区:[1]中国科学技术大学自动化系,合肥230031 [2]中科院合肥智能机械研究所,合肥230031

出  处:《中国科学技术大学学报》2003年第6期733-741,共9页JUSTC

基  金:国家自然科学基金资助项目 (6 0 1 730 5 0 )

摘  要:运用遗传算法 (GA)来优化设计径向基概率神经网络 (RBPNN)结构 ,优选了隐中心矢量和优化求取对应的核函数控制参数 .提出的染色体编码方式 ,充分体现了所选隐中心矢量在模式样本空间中的数量及位置分布 ,同时还包含了相适应的核函数控制参数信息 .新构造的适应度函数不仅有效地控制了网络输出的误差精度 ,而且还能够使得RBPNN结构优化趋于最简 .将IRIS分类问题用于检验该算法的有效性并与ROLSA和MKM进行了比较研究 ,结果表明 ,GA的优化效率最高 。The genetic algorithm is used to optimize the structure of the radial basis probabilistic neural networks (RBPNN), including selecting the hidden center vectors of the first hidden layer and determining the corresponding controlling parameters of the kernel function of RBPNN. The proposed genetic encoding method completely embodies the number and position distribution for the selected hidden center vectors in the pattern sample space, and involves information of the corresponding controlling parameters of the kernel function. The novel constructed fitting function can not only efficiently control the error accuracy of the RBPNN output, but also make the optimized RBPNN approach the most parsimonious structure. For a validity test, the proposed GA is used to solve IRIS classification problem and compared with ROLSA and MKM. The experimental results show that, the optimized performance of the proposed GA is the best among the three methods, with no obvious drop observed in the generalization performance of the optimized RBPNN by GA.

关 键 词:遗传算法 径向基概率神经网络 隐中心矢量 结构优化 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象