检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学和力学》2004年第2期189-196,共8页Applied Mathematics and Mechanics
基 金:国家自然科学基金资助项目(10372030);湖南省自然科学基金资助项目(02JJY4071)
摘 要: 利用薄板控制微分方程的等效积分对称弱形式和对变量(挠度)采用移动最小二乘近似函数进行插值,研究了薄板弯曲问题的无网格局部Petrov_Galerkin方法· 这是一种真正的无网格方法,它不需要任何有限元或边界元网格,不管这种网格是用于能量积分还是进行插值的目的· 所有的积分都在规则形状的子域及其边界上进行,并用罚因子法施加本质边界条件· 数值例子表明,无网格局部Petrov_Galerkin法不但能够求解二阶微分方程的边值问题,而且求解四阶微分方程的边值问题也很有效,也具有收敛快、稳定性好。The meshless local Petrov_Galerkin(MLPG) method for solving the bending problem of the thin plate were presented and discussed.The method used the moving least_squares approximation to interpolate the solution variables,and employed a local symmetric weak form.The present method was a truly meshless one as it did not need a finite element or boundary element mesh,either for purpose of interpolation of the solution,or for the integration of the energy.All integrals could be easily evaluated over regularly shaped domains(in general,spheres in three_dimensional problems) and their boundaries.The essential boundary conditions were enforced by the penalty method.Several numerical examples were presented to illustrate the implementation and performance of the present method.The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions.No post processing procedure is required to computer the strain and stress,since the original solution from the present method,using the moving least squares approximation,is already smooth enough.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.201.19