用人工神经网络对PZT陶瓷进行性能分析与优化  被引量:1

Property Analysis and Optimization of PZT Ceramic Material Throughan ANN Method

在线阅读下载全文

作  者:郭栋[1] 齐西伟[1] 李龙土[1] 南策文[1] 桂治轮[1] 

机构地区:[1]清华大学材料系新型陶瓷与精细工艺国家重点实验室,北京100084

出  处:《无机材料学报》2004年第1期223-228,共6页Journal of Inorganic Materials

摘  要:选取了几种常用的金属氧化物掺杂剂,在均匀实验结构的基础上用人工神经网络方法对掺杂PZT陶瓷的性能进行分析和优化.实验结果表明,掺杂PZT体系的人工神经网络模型要比多重非线形回归模型准确得多,而且以人工神经网络模型为指导对材料进行优化后的性能预测也比较准确,说明人工神经网络在陶瓷这种多组分固溶体材料的性能分析中具有良好的使用前景.Artificial neural network (ANN) technique was applied to model the PZT based piezoelectric ceramics system. After selecting several dopants, the experimental results of 21 PZT samples were analyzed by a BP network based on the homogenous experimental design. Calculated results indicated that the ANN model was much more accurate than multiple nonlinear regression analysis (MNLR) model for the same set of data. Optimized formulations were also calculated and the optimized d(33) and K-p output values agreed well with predicted values. These results suggest that the ANN based modeling is a very useful tool in dealing with problems with serious non-linearity encountered in the property analysis of the complicated solid solution material.

关 键 词:压电陶瓷 人工神经网络 误差反向传播算法 电学性能 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象