检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭栋[1] 齐西伟[1] 李龙土[1] 南策文[1] 桂治轮[1]
机构地区:[1]清华大学材料系新型陶瓷与精细工艺国家重点实验室,北京100084
出 处:《无机材料学报》2004年第1期223-228,共6页Journal of Inorganic Materials
摘 要:选取了几种常用的金属氧化物掺杂剂,在均匀实验结构的基础上用人工神经网络方法对掺杂PZT陶瓷的性能进行分析和优化.实验结果表明,掺杂PZT体系的人工神经网络模型要比多重非线形回归模型准确得多,而且以人工神经网络模型为指导对材料进行优化后的性能预测也比较准确,说明人工神经网络在陶瓷这种多组分固溶体材料的性能分析中具有良好的使用前景.Artificial neural network (ANN) technique was applied to model the PZT based piezoelectric ceramics system. After selecting several dopants, the experimental results of 21 PZT samples were analyzed by a BP network based on the homogenous experimental design. Calculated results indicated that the ANN model was much more accurate than multiple nonlinear regression analysis (MNLR) model for the same set of data. Optimized formulations were also calculated and the optimized d(33) and K-p output values agreed well with predicted values. These results suggest that the ANN based modeling is a very useful tool in dealing with problems with serious non-linearity encountered in the property analysis of the complicated solid solution material.
关 键 词:压电陶瓷 人工神经网络 误差反向传播算法 电学性能
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28