检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]莆田学院数学系,福建莆田351100 [2]集美大学基础教学部,福建厦门361021
出 处:《集美大学学报(自然科学版)》2003年第3期287-290,共4页Journal of Jimei University:Natural Science
基 金:福建省教育厅科研基金(JB01206)
摘 要:首先给出了拟复广义正定矩阵类(CP)_(D_n)的定义,这个矩阵类包含了复正定矩阵和复广义正定矩阵类,然后应用拟复广义正定矩阵的性质,得到了Hermitian正定矩阵和拟复广义正定矩阵的Hadamard乘积的行列式的模的下界估计,这些结果不仅概括了经典的关于Hermitian正定矩阵的Hadamard乘积的行列式的下界估计的Oppenheim定理,而且也推广和改进了最近有关复广义正定矩阵的Hadamard乘积的行列式的模的下界估计文献。In the paper, the definition of the similar complex generalized positive matrix (CP)Dn is given firstly. This matrix type contains the complex positive definite matrix and the complex generalized positive definite matrix. Then the application of the characteristics of the similar complex generalized positive definite matrix gives rise to the lower bound estimation of the determinant modulo about the Hadamard product of Hermi-tian positive definite matrix and similar complex generalized positive definite matrix. These not only gather up the classical oppemiheirm theorem about the lower bound estimation of the determinant modulo about the Hadamard product of the Hermitian positive definite matrix, but also extend and improve the recent literature on the lower bound estimate of the determinant modulo about the Hadamard product of the complex generalized positive definite matrix.
关 键 词:Oppenheim定理 拟复广义正定矩阵类 Hermitian正定矩阵 HADAMARD乘积 行列式 下界估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117