检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:FENGDazheng ZHANGXianda BAOZheng
机构地区:[1]KeyLaboratoryforRadarSignalProcessing,XidianUniversity,Xi'an710071,China [2]KeyLaboratoryforRadarSignalProcessing,XidianUniversity,Xi'an710071,China
出 处:《Chinese Journal of Electronics》2004年第1期1-7,共7页电子学报(英文版)
摘 要:This paper presents a novel neural network model for finding the principal components of an Ndimensional data stream. This neural network consists of r (≤N) neurons, where the i-th neuron has only N - i+1 weights and an N- i+1 dimensional input vector, while each neuron in most of the relative classical neural networks includes N weights and an N dimensional input vector. All the neurons are trained by the NIC algorithm under the single component case^[7] so as to get a series of dimension-reducing principal components in which the dimension number of the i-th principal component is N- i+1. In multistage dimension-reducing processing, the weight vector of i-th neuron is always orthogonal to the subspace constructed from the weight vectors of the first i-1 neurons. By systematic reconstruction technique, wecan recover all the principal components from a series of dimension-reducing ones. Its remarkable advantage is that its computational efficiency of the neural network learning based on the Novel information criterion (NIC) is improved and the weight storage is reduced, by the multistage dimension-reducing processing (multistage decomposition)for the covariance matrix or the input vector sequence. In addition, we study several important properties of the NIC learning algorithm.
关 键 词:神经网络 主成分分析 多级分解 NIC 性能 n维数据流 信息准则
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论] TP183[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117