基于改进GA-BP混合算法的电力变压器故障诊断  被引量:21

POWER TRANSFORMER FAULT DIAGNOSIS BY IMPROVED HYBRID ALGORITHM BASED ON GENETIC ALGORITHM AND BACK PROPAGATION ALGORITHM

在线阅读下载全文

作  者:王少芳[1] 蔡金锭[1] 刘庆珍[1] 

机构地区:[1]福州大学电气系,福建省福州市350002

出  处:《电网技术》2004年第4期30-33,共4页Power System Technology

摘  要:将改进遗传算法(GA)和误差反向传播(BP)算法相结合构成的混合算法用于训练人工神经网络。该混合算法有效地解决了常规 BP 算法学习网络权值收敛速度慢、易陷入局部极小和 GA 算法独立训练神经网络速度缓慢等缺点,并对其应用于电力变压器故障诊断进行了仿真,仿真结果表明了该算法具有较快的收敛速度和较高的计算精度,故障诊断结果证实了该算法应用于电力变压器故障诊断的有效性。The hybrid algorithm which combines improved genetic algorithm (GA) with error back-propagation algorithm (BP) is used to train artificial neural network. The defects of conventional BP algorithm, i.e., easy to fall into local minimum, slow convergence speed of the weight value of learning network, and that of GA, i.e., the training speed is too slow when GA is used to train the neural network effectively improved by itself, are effectively improved by the hybrid algorithm. The application of the hybrid algorithm to power transformer fault diagnosis is simulated, the results show that the hybrid algorithm possesses faster convergence speed and higher calculation accuracy.

关 键 词:电力变压器 故障诊断 遗传算法 人工神经网络 GA-BP混合算法 仿真 

分 类 号:TM41[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象