检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学振动冲击噪声国家重点实验室,上海200030
出 处:《上海交通大学学报》2004年第2期203-206,共4页Journal of Shanghai Jiaotong University
摘 要:利用基于随机变量概率密度函数的非参数密度估计的核密度估计法对评价函数进行直接估计,改进了盲分离算法的性能.理论推导和试验都证实了这种基于核密度估计的非参数密度估计盲分离算法能实现包含超高斯和亚高斯信号的杂系混合信号的盲分离,为盲分离问题在实际问题中的应用奠定了一定的基础.Kernel density estimation (KDS) is a nonparametric density estimation based on random variables probability density functions, and it is not limited in any assumption about the density function model, and it is evaluated from the original data without the consideration of the above statistical features. Based on it, the score function was estimated by KDS, the performance of algorithms for BSS was improved. The theoretical derivation and experiments show that this algorithm succeeds in separating the hybrid mixing signals including the super-Gaussian and sub-Gaussian signals, and it paves the way to wider applications of BSS methods to real world signal processing.
分 类 号:TN911.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117