检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学汽车学院,山东威海264209 [2]哈尔滨工业大学复合材料研究所和光电信息中心,哈尔滨150001
出 处:《应用数学和力学》2004年第3期228-232,共5页Applied Mathematics and Mechanics
摘 要: 引入势函数,形成运动微分方程,对运动微分方程和各种响应进行Laplace变换及Fourier正弦、余弦变换,最后求解由边界条件形成的对偶方程———这种研究动态裂纹的方法已经被广泛使用并成为比较系统的方法· 以一种模型为例,对其推演过程进行了研究,最后发现:此方法在数学推演时,存在着不严密的问题,推演结果带有偶然性。In the investigation on fracture mechanics,the potential function was introduced,and the moving differential equation was constructed.By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses,the dual equation which is constructed from boundary conditions lastly was solved.This method of investigating dynamic crack has become a more systematic one that is used widely.Some problems are encountered when the dynamic crack is studied.After the large investigation on the problems,it is discovered that during the process of mathematic derivation,the method is short of precision,and the derived results in this method are accidental and have no credibility.A model for example is taken to explain the problems existing in initial deriving process of the integral-transformation method of dynamic crack.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200