检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西安交通大学学报》2004年第3期230-233,238,共5页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(50175087);国家"十五"科技攻关计划资助项目(2001BA204B05).
摘 要:提出了用支持向量机对机械设备状态趋势进行预测的新方法,构造了相应的支持向量回归机,并分别用仿真数据和实际数据对其性能进行了验证.将该支持向量回归机应用于某机组振动信号的预测,采用径向基核函数和合适的参数,使该向量回归机对振动量峰峰值的单步预测误差小于2%,24步预测误差小于5%,表明该算法对机械设备的运行状态趋势具有较好的预测能力.A new method of condition trend prediction of mechanical equipment based on support vector machine was presented and the support vector regression machine was constructed. Both simulation data and actual data were used to validate the performance of this regression machine. The support vector regression machine was applied to the trend prediction of the vibration signal from machine sets. The single-step prediction error for peak-peak value of the vibration signal is less than 2% and the 24 steps prediction error is less that 5% with radial basis function (RBF) kernel function and proper parameters. These results show that the support vector regression machine has excellent performance of condition trend prediction for mechanical equipment.
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.232.123