检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈春银[1] 陈剑佩[1] 张家庭[1] 戴干策[1]
机构地区:[1]华东理工大学联合化学反应工程研究所,上海200237
出 处:《化工学报》2004年第2期189-197,共9页CIESC Journal
摘 要:研究了内径0 382~ 1 16m机械搅拌釜中翼型组合桨气液两相的持气特性 ,考察了结构参数 (包括翼型桨径、桨间距、桨下距离、通气位置、挡板形式及翼型桨排出流方向 )和操作参数 (包括搅拌转速与通气量 )对气含率的影响 .采用单位体积功率和表观气速及Froude数和通气流动数两种方法对气含率进行了关联处理 ,并采用神经网络技术建立了翼型组合桨的气含率关联的网络模型 ,该模型掌握了各参数对气含率的影响规律 ,具有很好的泛化能力 ,与传统关联方法相比 ,网络模型的预测误差可缩小至± 10 %以内 .A fractional gas hold-up performance in mechanically agitated reactor (i.d. range is 0.382 m to 1.16 m) with mixed hydrofoil impeller 6k5 and Rushton turbine was presented. The effects of geometrical variables, including the ratio of impeller diameter, the distance between impellers, the clearance of lower impeller, gas sparger position, the baffle type, and the operating conditions such as agitator speed, the rate of gas, and the pumping mode of axial impeller 6k5 on fractional gas hold-up were investigated. With the dimensionless and dimensional methods, two correlations were proposed, but their prediction ability was not satisfactory. The correlation based on artificial neural network was established. It was able to predict fractional gas hold-up reasonably well and the relative mean error of generalization by this neural network model was within ±10%, if the parameters were in the trained range. The neural network model could be used for offline prediction and parameter optimization, and could be useful for scale-up because dimensionless parameters were used.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.186.192