检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2004年第5期21-22,37,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60275020)
摘 要:根据隐含语义分析(LSA)理论,提出了一种文本聚类的新方法。该方法应用LSA理论来构建文本集的向量空间模型,在词条的权重中引入了语义关系,消减了原词条矩阵中包含的“噪声”因素,从而更加突出了词和文本之间的语义关系。通过奇异值分解(SVD),有效地降低了向量空间的维数,从而提高了文本聚类的精度和速度。This paper presents a new method of text clustering by latent semantic analysis. This method establishes vector space model of term weight by the theory of latent semantic analysis, and eliminates disadvantageous factors. This method decreases the number of vector, and advances the speed and precision of text clustering.
关 键 词:文本聚类 隐含语义分析 奇异值分解 向量空间模型
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.57