基于改进遗传算法的无功综合优化  被引量:13

Reactive power optimization of integrative power system based on improved genetic algorithm

在线阅读下载全文

作  者:盛兆俊[1] 刘瀚[1] 

机构地区:[1]华北电力大学电力系,河北保定071003

出  处:《电力自动化设备》2004年第4期27-29,共3页Electric Power Automation Equipment

摘  要:简要分析了传统的电力系统无功优化方法的局限性之后,提出了一种快速有效的求解方法———改进的遗传算法(IGA)。在简单遗传算法(SGA)的基础上,提出了自适应遗传算法,该算法采取了与个体分布散度成正比,并随最优个体保留代数成指数上升的自适应变异率;同时也采取了自适应的交叉率,该交叉率与群体中最大的适应度值和每代群体的平均适应度值有密切的关系。算例表明提出的算法优化效果好,而且在精度上和收敛速度上都有较大的提高。After the limitation of traditional reactive power optimization methods for power system has been briefly analyzed,an effective and fast method is put forward-the improved genetic algorithm(IGA). A self-adaptive genetic algorithm is put forward on the basis of simple genetic algorithm(SGA). It applies self-adaptive variation rate,which is proportional to individual distribution scatter degree and rises exponentially with the times of optimum individual reserve generation. It also applies self-adaptive crossing rate,which has close relation with the maximum colony adaptation degree and the average colony adaptation degree of each generation. The calculation example indicates that this algorithm has the optimum results with improved precision and convergence speed.

关 键 词:自适应遗传算法 电网损耗 无功优化 电力系统 

分 类 号:TM714.3[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象