检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力自动化设备》2004年第4期27-29,共3页Electric Power Automation Equipment
摘 要:简要分析了传统的电力系统无功优化方法的局限性之后,提出了一种快速有效的求解方法———改进的遗传算法(IGA)。在简单遗传算法(SGA)的基础上,提出了自适应遗传算法,该算法采取了与个体分布散度成正比,并随最优个体保留代数成指数上升的自适应变异率;同时也采取了自适应的交叉率,该交叉率与群体中最大的适应度值和每代群体的平均适应度值有密切的关系。算例表明提出的算法优化效果好,而且在精度上和收敛速度上都有较大的提高。After the limitation of traditional reactive power optimization methods for power system has been briefly analyzed,an effective and fast method is put forward-the improved genetic algorithm(IGA). A self-adaptive genetic algorithm is put forward on the basis of simple genetic algorithm(SGA). It applies self-adaptive variation rate,which is proportional to individual distribution scatter degree and rises exponentially with the times of optimum individual reserve generation. It also applies self-adaptive crossing rate,which has close relation with the maximum colony adaptation degree and the average colony adaptation degree of each generation. The calculation example indicates that this algorithm has the optimum results with improved precision and convergence speed.
分 类 号:TM714.3[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15